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Abstract 
Clustering using cocitation and bibliographic coupling is an effective tool to analyze the structure of scientific 
research, but its arbitrariness in the setting of a clustering threshold is a problem. This study tracked modularity 
of citation networks in research domains, and we found that there are three stages in clustering of citation 
networks and it is universal across our case studies. In the first stage, core clusters in the domain are formed. In 
the second stage, peripheral clusters are formed, while core clusters continue to grow. In the third stage, core 
clusters grow again. By focusing on the elementary process in clustering, we can understand the structure of 
citation networks in each research domain and judge the location of each cluster and paper, which cannot be seen 
in the final clustering results. 

Introduction 
Scientific activities are playing an increasingly important role in solving social problems and 
also as seeds of industrial innovations. In today's increasingly global and knowledge-based 
economy, competitiveness and growth depend on the ability of an economy to meet fast-
changing market needs quickly and efficiently through the application of new science and 
technology. The capacity to assimilate and to apply new knowledge relies on scientific 
innovativeness. Therefore, for both R&D managers in companies or research institutions and 
policy makers, maintaining a comprehensive perspective on a knowledge domain and noticing 
emerging research domains has become a significant task. 
Reflecting such importance, the amount of scientific knowledge measured by the number of 
academic publications has been rapidly increasing since the beginning of this century. 
Academic publications and patents provide the primary raw material, and their bibliometric 
information, i.e., authors, journals, titles, keywords, references, citations, and so on, constitute 
an adequate information source for the mapping or assessing fields or subfields of scientific 
and technological domains. Academic publications and patents constitute a generally accepted 
output indicator of scientific and technological activities. There are a number of reports and 
also many opportunities to create, disseminate, and apply knowledge to the real world in 
active research areas. But the speed and scope of development in such areas make it critical 
for researchers, engineers, and policy makers to notice information published across different 
research domains and different institutions. There is a commensurate increase in the need for 
scientific and technical intelligence to discover emerging research domains and the topics 
discussed there, even for unfamiliar domains (van Raan, 1996; Kostoff et al., 2001; Boyack & 
Börner, 2003). 
Citation network analysis of scientific publications is a promising tool to overview scientific 
activities in a manner that individuals cannot handle. In his classical paper, de Solla Price 
(1965) originally introduced the concept of a research front. According to Price, there seems 
to be a tendency for scientists to cite the most recently published articles. The research front 
builds on recent work, and the network there becomes very tight. In a given field, a research 



front refers to the body of articles that scientists actively cite. Researchers have studied 
quantitative methods that can be used to identify and track the research front as it evolves 
over time. 
Progress in computational speed enables us to treat a huge amount of data by bibliometric 
methods. In citation network analysis, cocitation (Small, 1973) and bibliographic coupling 
(Kessler, 1963) are frequently used to form a link between two documents. The created 
network data are used for visualization by using dimensional reduction techniques including 
multidimensional scaling (Small, 1977; Davidson et al., 1998), pathfinder networks (White, 
2003; Chen et al., 2002; Chen, 2004), and force-directed placement (Davidson et al., 1998). A 
comprehensive review of knowledge domain visualization can be found in a recent article by 
Börner and others (Börner, Chen, & Boyack, 2003). Knowledge domain visualization is a 
useful approach for intuitively understanding the overall structure of research. 
Clustering is also a useful technique for understanding the overall structure of research and to 
detect research fronts. Cluster analysis is based on the similarity measure that is calculated for 
each pair of nodes. There are a number of clustering algorithms such as single link, average 
link, and Ward’s method. Clustering results are also used in knowledge domain visualization 
(Small, 1999; Morris et al., 2003). For example, Morris et al. (2003) plotted each cluster 
along a horizontal track in the timeline, which is obtained after clustering by Ward's method 
using a cosine coefficient as a similarity measure on each link created by bibliographic 
coupling. The recursive clustering approach is a method to repeatedly perform clustering 
toward a network clustered once and is used to detect the hierarchical structure of a citation 
network. There are two methods for the recursive clustering approach, i.e., bottom-up (Small, 
2006) and top-down (Takeda, Kajikawa, & Matsushima, 2007; Kajikawa et al., 2008) 
clustering is used to elucidate the hierarchical structure of a network. In bottom-up clustering, 
each cluster after clustering is treated as a node and then re-clustering is performed, while top-
down clustering means that the initial nodes in each cluster are re-clustered and therefore 
subclusters are formed in an initial cluster. 
Although clustering a citation network is a useful approach for elucidating and describing a 
network structure, there are some issues in the selection of similarity measures (Klavans & 
Boyack, 2006), clustering methodology, thresholds, and robustness of clustering (Hopcroft et 
al., 2004). In the selection of similarity measures, Klavans and Boyack (2006) compared the 
similarity of clustering results by intercitation with that by co-citation. They concluded that 
intercitation is more appropriate for clustering of similar documents. Intercitation also allows 
us to group papers that are only rarely cited, which is a significant portion of all papers 
(Hopcroft et al., 2004). Cocitation is less useful as a similarity measure, because it takes time 
to build up a cocitation record (Hopcroft et al., 2004). After defining the similarity measure, 
we select clustering methodologies having different characteristics and solutions, preventing 
unexpected results. For example, single-link cluster analysis gathers together links that share 
common papers. To prevent chaining, a maximum cluster size is set with a provision for re-
clustering at a higher threshold (Small & Sweeney, 1985). And, to perform clustering, a 
threshold is sometimes set on the normalized co-citation coefficient of cosine similarity 
(Small, 2006). While a variance of threshold enables the user to freely navigate the 
knowledge domain from the macro to micro level, setting a threshold at a certain value is an 
arbitrary assumption, and we have less guidance for setting an adequate threshold. Therefore, 
the size of a research front obtained after clustering is dependent on the value of the threshold. 
In order to discuss the validity of such operations and to utilize the fruitful outcome of 
clustering results, understanding of the nature of citation networks is crucial but the existing 
literature is still insufficient.  
The aim of this paper is to investigate the modularity change accompanying clustering. 
Recently, Newman (2004) defined modularity as the fraction of links in a network that 



connect nodes (within cluster links) minus the expected value of the same quantity in a 
network when random links are assumed between nodes with the same cluster divisions. 
Stopping clustering at the maximum modularity is a reasonable approach for dividing 
knowledge domains into appropriate units, but the user might require a different outcome on a 
different scale. Therefore, it is required that the system show different outcomes derived from 
different clustering thresholds and to navigate the user to overview the knowledge domain on 
a different scale, but in turn, there is no guidance for judging the relevance of such clustering 
results. Our motivation in this paper is to analyze the fundamental structure of citation 
networks by tracking modularity. 

Data and Methods 

Data 
In this work, we analyzed intercitation networks of scientific publications in the above two 
domains. One is the energy domain, and the other is the materials science domain. Three sub-
domains were constructed in energy domain, i.e., energy & fuels (E&F), the fuel cell (FC), 
and the solar cell (SC). For the materials science domain, two of its sub-domains, 
nanobiotechnology (NB) and chemical vapor deposition (CVD), were analyzed. The 
sustainability science (SS) was also analyzed as one of environmental science domains. These 
targets of analysis were set according to the specialty and interest of one of the authors (YK). 
We collected citation data of publications from the Science Citation Index (SCI) compiled by 
the Institute for Scientific Information (ISI). We used the Web of Science, which is a web-
based user interface of ISI’s citation databases.  
The following queries are used to collect papers; fuel cell* for FC, solar cell* for SC, nano* 
and bio* for NB, chemical vapor deposition or chemical vapor deposition for CVD, and 
sustainab* for SS. The corpus for E&F was constructed by using journal categories of Journal 
Citation Reports (JCR). We collected papers published in the 68 journals classified under the 
category of energy & fuels in JCR. This is because when we use the simple query, energy, to 
collect energy-related papers, the results have a variety of non-energy-related topics and are 
noisy. A total of 152,514 records for E&F, 15,600 for FC, 16,199 for SC, 19,921 for NB, 
46,525 for CVD, and 29,391 for SS were retrieved. We created citation networks using the 
above corpuses. In the construction of citation networks, we add cited papers by the above 
papers that were originally retrieved and collected using the above queries. Most of these 
cited papers were not included in the corpus retrieved by the queries. Then, we extract the 
maximum connected components in these networks. The number of papers in the components 
is 1,011,612 (E&F), 147,662 (FC), 150,607 (SC), 434,633 (NB), 467,292 (CVD), and 
633,286 (SS) . These papers were then clustered using the algorithm described below, and 
modularity during the clustering was recorded.  

Methods 
We focused on the topological clustering method in order to elucidate the structure of the 
above citation networks. Citation networks where each paper is connected by intercitation 
were divided into clusters. Of the many clustering methods and algorithms proposed, in this 
paper, we applied the method proposed by Newman (2004), because this could deal with large 
networks with small calculation time in the order of O((m+n)n), or O(n2) on a sparse network, 
with m edges and n nodes; therefore, this could be applied to large-scale networks (Newman, 
2004; Newman & Girvan, 2004). The algorithm proposed was based on the idea of 
modularity. Modularity Q was defined as follows:: 
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where est is the fraction of the edges in the network that connect nodes in cluster s to those in 

cluster t, and 
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. The first part of the equation, Tr(e), represents the sum of density of 
links within each cluster. A high value of this parameter means that nodes are densely 
connected within each cluster. However, the maximum value of this is given if whole nodes 
are regarded as one cluster. The second part of the equation, ||e||2, represents the sum of 
density of links within each cluster when all edges are placed randomly. That is, Q is the 
fraction of links that fall within clusters, minus the expected value of the same quantity if the 
links fall at random. A high Q value represents a good community division where there are 
only dense links within clusters and sparse links between clusters. Q = 0 means that a 
particular division gives no more within-cluster links than would be expected by random 
chance.  
The algorithm to optimize Q over all possible divisions to find the best structure of clusters is 
as follows. Starting with a state in which each node is the only member of one of n clusters, 
we repeatedly join clusters together in pairs, choosing at each step the join that results in the 
greatest increase in Q. Usually, the clustering threshold by this clustering algorithm is set at 
the time that Q reaches at its maximum, i.e., Qmax. Therefore, by stopping clustering at the 
maximum value of Q, Qmax, we can obtain the modularized network structure where there are 
only dense links within clusters and sparse links between clusters. It is reasonable to stop the 
clustering. But in this paper, instead seeking Qmax, we track Q at each clustering step to 
elucidate the structure of citation networks. By doing so, we can use Q as a clue to 
understanding the general structure of citation networks. 

Results 
Figure 1 shows the result of our analysis of the modularity of citation networks during 
clustering. As shown in these figures, Q increases as clustering proceeds, but after reaching 
Qmax, it suddenly decreases. But the increase of Q is not linear throughout the entire process of 
clustering. At the early stage of clustering, Q characteristically has some inflection points for 
all five domains. The number of inflection points is typically around four. There is a general 
tendency that in the early stage, some inflection points appear. 
 

 
Figure 1. Modularity at each clustering step. (a) E&F, (b) FC, (c) SC, (d) NB, (e) CVD, and (f) 

SS. 

 
In order to investigate the more detailed structure, we look at the number of nodes clustered in 
each step. In each clustering step, two clusters or nodes are gathered into one cluster. The size 



of clusters or nodes participating in clustering at each step is not always the same. Figure 2 
shows the number of nodes in the bigger cluster, and Fig. 3 shows that in the smaller cluster.  
 

 
Figure 2. Number of nodes of the larger cluster at each clustering step. (a) E&F, (b) FC, (c) SC, 

(d) NB, (e) CVD, and (f) SS. 

 

 
Figure 3. Number of nodes of the smaller cluster at each clustering step. (a) E&F, (b) FC, (c) SC, 

(d) NB, (e) CVD, and (f) SS. 

 
When the number of node is one, it means that the cluster is a single node that has not 
participated in the clustering. At first glance, we can see three different stages in clustering. 
At the first stage, the plot is several continuous curves. At the second stage, the plot becomes 
more disturbed. At the third stage, it becomes several curves again. 
For example, in the case of FC (Fig. 2(*)), until the clustering step around 40,000, four slopes 
are seen. This means that in this stage, each cluster grows exclusively, and when it reaches a 
certain size, the growing point shifts to the next cluster. The number of nodes in the cluster 
fused into the growing cluster is less than 10 (Fig. 3(*)). This exclusive growth continues 
until the clustering step around 40,000, which accords with the point at which nonlinear 
growth of Q appears as shown in Fig. 1(*). And the number of Q curves and inflection points 
in Fig. 1(*) seem to correspond with the number of continuous curves in Fig. 2(*). During the 
clustering step from 40,000 to 100,000, this exclusive growth is disturbed. And many 
medium-size clusters whose number of nodes is about 10 to 1,000 grow competitively (Fig. 



2(*)). A feature of this stage is that the smaller cluster also has a variety of sizes (Fig. 3(*)). In 
this stage, these clusters coalesce into each other, but there is no dominant cluster that grows 
exclusively. When a pair of clusters coalesced, other pairs coalesced at the next step. After 
this competitive growth stage, only large cluster grows exclusively again after the clustering 
step of 100,000. Judging from Fig. 2(*), these clusters are the same as those generated in the 
first stage. The number of clusters fused into these large clusters is unity, and these are 
therefore single nodes. This growth of large clusters continues after Q reaches Qmax. When we 
proceed with clustering after Q reaches Qmax, Q suddenly decreases because large independent 
clusters coalesce and the clustered network is like a random structure. 

Discussion 
 In the above, we take FC as an example. But the remaining cases all exhibit similar trends, 
while there is a slight difference. But all domains studied in this paper have the three stages. 
At stage I, some clusters grow exclusively. At stage II, other medium-sized clusters grow 
competitively. At stage III, clusters generated at stage I grow exclusively again. This process 
is schematically shown in Fig. 4.  
 

I II III

 
Figure 4. Schematic illustration of the clustering process. I. Core cluster formation stage. II. 

Medium-sized cluster formation stage. III Core cluster growth stage. 

 
In stage I, several clusters emerge and these clusters grow collecting single nodes or small 
clusters whose sizes are less than 10. The growth is sequential, and a cluster grows 
exclusively and reaches a certain value. As determined by the clustering algorithm, the node 
that conveys larger ΔQ by clustering is preferentially aggregated. In the latter, we call clusters 
generated in stage I cluster A. The size of cluster A is larger than the other clusters formed in 
the later stage, and this type of cluster can therefore be regarded as the core cluster in each 
research domain. 
In stage II, the exclusive growth of cluster A is disrupted, and the other clusters are formed 
and grow competitively. We call these clusters that form and grow in stage II cluster B. At the 
initial stage of the formation of cluster B, it grows by collecting single nodes or small clusters 
whose sizes less than 10 in a similar manner to cluster A. But after that, these clusters grow 
by coalescence of medium-sized clusters with sizes of around several tens or hundreds. The 
number of cluster B is larger that that of cluster A, but the size of each cluster is smaller in 
cluster B than that in cluster A. 
In stage III, cluster A grows exclusively again by collecting mainly single nodes at each step. 
But these nodes are not included in stage I, and we can therefore regard these nodes as being 
in a more peripheral position in the network than nodes participating in the clustering of stage 
I. 
Finally, when we proceed with clustering by exceeding Qmax, we can call this stage stage IV, 
and even cluster A coalesces within itself and Q drastically decreases; at last, the network 
becomes a single cluster. This no longer gives an appropriate clustering result. 



The above analysis gives us the following suggestions in the interpretation and utilization of 
the clustering results. One is to distinguish core domains (cluster A) and peripheral domains 
(cluster B). When cluster A grows, ΔQ is large, which means a denser citation network exists 
within these clusters than the other clusters generated at stage II. Therefore, we can regard 
these large clusters generated in stage I as core clusters in each research domain, while 
medium-sized clusters generated in stage II are peripheral. Therefore, it is reasonable to 
consider that cluster A includes main research topics in the research domain, while cluster B 
comprises rather minor topics although they should not be ignored. As shown in Table 1, 
network density defined by the number of links per node is smaller in cluster B than in cluster 
A. Therefore, we can regard cluster B as not being dense and thus not mature. But we must 
keep in mind that nodes included in cluster A can also be divided into two types. One is nodes 
clustered in stage I and other is nodes clustered in stage III. ΔQ in each clustering step is 
smaller for the latter than for the former, and therefore, nodes included in stage III are also 
peripheral and may be sometimes noisy in cluster A. 
 

Table 1. Density of networks. 

 E&F FC SC NB CVD SS 
Cluster A 1.90 2.67 2.45 2.09 2.77 1.50 
Cluster B 1.15 1.11 1.09 1.14 1.14 1.08 

 
As already mentioned above, for the purpose of clustering to obtain structures where there are 
only dense links within clusters and sparse links between clusters, it is desirable to set the 
clustering threshold at Qmax. But when we look at only the final clustering results, we cannot 
judge how clustering proceeds or what the characteristics of each node and each cluster are. 
By tracking the modularity during clustering, we can distinguish core and peripheral clusters 
and nodes in each cluster. One plausible direction for using these implications classified in 
this paper is to provide a mark to distinguish core and peripheral for users utilizing the 
clustering results such as policy makers and R&D managers. 

Conclusion 
Clustering is an effective tool to analyze the structure of scientific research, but detailed 
structures obtained after and during clustering are not yet sufficiently elucidated. This study 
analyzed the structure of citation networks by tracking modularity during clustering. Five 
cases were analyzed, and these cases exhibit common characteristics. We found that there are 
three stages in clustering of citation networks and it is universal across our case studies. In the 
first stage, core clusters in the domain are formed and grow exclusively. In the second stage, 
peripheral clusters are formed and grow competitively. In the third stage, core clusters grow 
again by collecting peripheral nodes. By focusing on the elementary process in clustering, we 
can understand the structure of citation networks in each research domain and judge the 
location of each cluster and paper, which cannot be seen in the final clustering results. 
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